Abstract

Dirofilariasis is a helminths vector-borne disease caused by two species of Dirofolaria—D. repens and D. immitis. The former is overwhelmingly associated with human dirofilariasis. The vector of the worm are mosquitoes of the family Culicidae (largely Culex, Aedes and Anopheles). The definitive hosts of Dirofilaria are dogs and to a lesser extent cats. Humans are an accidental host. A total of 1200 human cases caused by Dirofilaria were registered in the territory of the ex-USSR during the period 1915–2016. Zonal differences have been seen in the prevalence of infected dogs and mosquitoes. Studies undertaken in the southern part of the Russian Federation (RF) revealed the prevalence of Dirofilaria in dogs to be 20.8% with wild variations of larva density. Studies carried out in the central part of the RF found that the prevalence of parasites in dogs was 4.1%. Aedes mosquitoes were infected less than Culex and Anopheles mosquitoes. The latter were infected by D. repens more often than Culex and Aedes. Zonal differences were also traced in regard to Dirofilaria prevalence in humans, thus allowing identification of three zones of risk of infection (low, moderate, and stable), reflected in a series of constructed maps. Although Dirofilariasis was known on the territory of Russia from 1915, only sporadic cases of the disease were reported occasionally. Its number was showed an increasing trend only during the 1980s–1990s, reaching the level of hundreds of cases. The majority of cases were confined to the southern parts of Russia with geographic coordinates of 43°–45° on the northern latitude. Comparison of the timing of the global trend of climate warming during the 1990s with the temporal pattern of Dirofilaria on the territory of Russia during the same period demonstrated a close association between two phenomena. With the continuous process of global climate warming, the incidence of dirofilariasis both in man and dogs goes unabated exemplified by the territorial expansion of the disease northwards and eastwards attaining the latitude of 56°–57° on the northern latitude in the European and Asian parts of Russia. It appears that within the period of the last 20–25 years, the population at risk has doubled. Under these circumstances, dirofilariases in Russia should be considered as an emerging public health problem necessitating the establishment of a comprehensive epidemiological monitoring system with strong entomological and veterinary components. Based on the results obtained, an appropriate control intervention could be developed.

Highlights

  • The first case of subcutaneous dirofilariasis was described in Palermo, Italy, in 1867 by AngeloPace, who extracted a very thin nematode of about 100 mm in length from the upper eyelid of a nine-year-old boy

  • In 1940, Desportes concluded that all nematodes detected in humans and defined as Filaria conjunctivae belong to Dirofilaria genus and do not differ from D. repens (Railliet and Henry, 1911) [1]

  • In 1946, Skrjabin confirmed that all cases of subcutaneous dirofilariasis caused by nematodes under the names of F. palpebralis, F. conjunctivae, and Loa extraocularis were, due to D. repens

Read more

Summary

Introduction

The first case of subcutaneous dirofilariasis was described in Palermo, Italy, in 1867 by Angelo. The nematode was defined as Filaria palpebralis. In 1898 in Sicily, Italy, Addario described the nematode from the eyelid of a woman as Filaria conjunctivae [1]. In 1940, Desportes concluded that all nematodes detected in humans and defined as Filaria conjunctivae belong to Dirofilaria genus and do not differ from D. repens (Railliet and Henry, 1911) [1]. In 1946, Skrjabin confirmed that all cases of subcutaneous dirofilariasis caused by nematodes under the names of F. palpebralis, F. conjunctivae, and Loa extraocularis were, due to D. repens. Dogs are the most important source for human transmission, their infectivity in Russia varies within a broad range 1.4–44.5% [1]. Exponential increase of dirofilariais in man and in dogs reported during the last 20–30 years in Russia dictates that the national authorities should consider the situation as an emerging public health problem necessitating the implementation of efficacious preventive and control measures

Epidemiology of Dirofilariasis in the Ex-USSR
Age-Wise and Sex-Wise of Cases
Seasonality of Human Dirofilariasis
Geographical Confinement of Human Dirofilariasis
Detection and Diagnosis of Human Dirofilariasis Cases
Localization of Dirofilaria
Clinical Manifestations of Human Dirofilariasis
Dirofilariasis in Dogs
Dirofilaria in Vectors
Epidemiological Classification of Human Dirofilariasis Cases
Control andof
Findings
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.