Abstract

BackgroundGlutamate-induced excitotoxicity, oxidative damage, and neuroinflammation are believed to play an important role in the development of a number of CNS disorders. We recently reported that a high dose of glutamate could induce AMPK-mediated neurodegeneration in the postnatal day 7 (PND7) rat brain. Yet, the mechanism of glutamate-induced oxidative stress and neuroinflammation in the postnatal brain is not well understood. Here, we report for the first time the mechanism of glutamate-induced oxidative damage, neuroinflammation, and neuroprotection by polyphenolic anthocyanins in PND7.MethodsPND7 rat brains, SH-SY5Y, and BV2 cells treated either alone with glutamate or in combination with anthocyanins and compound C were examined with Western blot and immunofluorescence techniques. Additionally, reactive oxygen species (ROS) assay and other ELISA kit assays were employed to know the therapeutic efficacy of anthocyanins against glutamate.ResultsA single injection of glutamate to developing rats significantly increased brain glutamate levels, activated and phosphorylated AMPK induction, and inhibited nuclear factor-E2-related factor 2 (Nrf2) after 2, 3, and 4 h in a time-dependent manner. In contrast, anthocyanin co-treatment significantly reduced glutamate-induced AMPK induction, ROS production, neuroinflammation, and neurodegeneration in the developing rat brain. Most importantly, anthocyanins increased glutathione (GSH and GSSG) levels and stimulated the endogenous antioxidant system, including Nrf2 and heme oxygenase-1 (HO-1), against glutamate-induced oxidative stress. Interestingly, blocking AMPK with compound C in young rats abolished glutamate-induced neurotoxicity. Similarly, all these experiments were replicated in SH-SY5Y cells by silencing AMPK with siRNA, which suggests that AMPK is the key mediator in glutamate-induced neurotoxicity.ConclusionsHere, we report for the first time that anthocyanins can potentially decrease glutamate-induced neurotoxicity in young rats. Our work demonstrates that glutamate is toxic to the developing rat brain and that anthocyanins can minimize the severity of glutamate-induced neurotoxicity in an AMPK-dependent manner.Electronic supplementary materialThe online version of this article (doi:10.1186/s12974-016-0752-y) contains supplementary material, which is available to authorized users.

Highlights

  • Glutamate-induced excitotoxicity, oxidative damage, and neuroinflammation are believed to play an important role in the development of a number of central nervous system (CNS) disorders

  • We examined the protein expression level of AMPAR, phosphorylated AMPKTh172 (p-5' adenosine monophosphateactivated protein kinase (AMPK)), nuclear factor-E2-related factor 2 (Nrf2), and phosphorylated nuclear factor kappa (p-NF-kB) in the hippocampal brain homogenates of the developing brain in a timedependent manner

  • Our results show that glutamate treatment after 4 h significantly reduced cellular GSH content and GSH/GSSG ratio compared with the saline-treated control in the developing rat brain (Additional file 1: Fig. S1)

Read more

Summary

Introduction

Glutamate-induced excitotoxicity, oxidative damage, and neuroinflammation are believed to play an important role in the development of a number of CNS disorders. The overstimulation of postsynaptic glutamate receptors causes neuronal injury/death, which is termed as glutamate excitotoxicity as is believed to be involved in amyotrophic lateral sclerosis (ALS) and several other CNS disorders [2,3,4]. This glutamate excitotoxicity is believed to arise from the entrance of a high rate of Ca2+ into the neurons as a result of overstimulated postsynaptic glutamate receptors [5]. There is a sophisticated antioxidant defense mechanism in cells that aides in coping with ROS levels under normal physiological conditions, but under certain conditions, such as excessive ROS and inflammation, excessive Ca2+ can cause cellular dysfunction and remodeling [9, 10]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call