Abstract
ABSTRACT Efficient anthocyanin extraction from emerging food matrices is essential in food technology and requires a precise, consistent, and clear extraction method. This study aimed to develop a decision-tree tool for selecting the optimal anthocyanin extraction technique. A comprehensive data synthesis covering the years 2018 to 2023 was conducted using leading academic databases, including Web of Science, Scopus, Medline, and SciELO. A combination of systematic and non-systematic approaches was employed to guide the decision-making process. The keywords used included “anthocyanin extraction methods,” and studies with more than 10 citations were prioritized, along with recent and relevant publications. Thirty-six articles were analyzed according to the PRISMA 2020 guidelines for systematic reviews. While ultrasound and microwave-assisted methods were predominantly featured, accounting for 46% of the reviewed studies, other methods such as enzyme-assisted extraction, deep eutectic solvents, and ionic liquid extraction were also evaluated for their comparative efficiency and suitability across various matrices. Fruits were the primary matrix, with a focus on the pericarp. While fruits, particularly the pericarp, was the primary matrix studied, the decision-tree tool is designed to be applicable across various food matrices, demonstrating its versatility and generalizability beyond fruits. The decision-tree tool was successfully applied to matrices with different structures, showcasing its adaptability. Integration of this tool could streamline selection processes, resulting in significant time and resource savings. In conclusion, this study highlights the influence of plant morpho-anatomical structures and extraction parameters on anthocyanin yield. It demonstrates how the decision-tree approach enhances efficiency and productivity, validated through blackberry and purple sweet potato matrices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.