Abstract

Wine is consumed by humans worldwide, but the functional components are lost and the color changes during its production. Here, we studied the effects of mannoprotein (MP) addition (0, 0.1, and 0.3 g/L) upon crushing and storage. We measured anthocyanins, phenolic acids profiles, color characteristics, and antioxidant activities of wine. The results showed that the addition of MP before fermentation significantly increased the total phenolic content (TPC), total anthocyanin content, total tannin content (TTC), total flavonoid content, and total flavanol content in wine, whereas the addition of MP during storage had the opposite effect. The addition of MP before alcohol fermentation significantly increased the amount of individual anthocyanins and individual phenolic acids, maintained the color, and increased the antioxidant capacity of wine. In addition, the addition of 0.3 g/L MP during storage increased the content of individual phenolic acids and TPC of wine. However, the addition of 0.1 g/L MP during storage significantly reduced the TPC, TAC, TTC, and individual anthocyanin content (except for malvidin-3-glucoside and malvidin-3-acetly-glucoside); meanwhile, the treatment attenuated the color stability and antioxidant capacity of wine. The results demonstrated that the addition of MP before alcohol fermentation could increase the functional components and improve the color stability and antioxidant capacity of wine.

Highlights

  • Wine directly affects the human nervous system and increases muscle tension, improves human immunity, and scavenges reactive oxygen species (ROS) to protect cells from oxidative damage

  • The effects of MP addition on the physicochemical characteristics of wine including reducing sugar, total acidity, alcohol, total phenolic content (TPC), total anthocyanin content (TAC), total tannin content (TTC), total flavonoid content (TFC), and total flavanol content (TFAC) were measured in each sample

  • Studies reported that MP could slightly increase the sugar content of alcoholic products, which in turn had an effect on alcohol content possibly because MP is a polysaccharide [20]

Read more

Summary

Introduction

Wine directly affects the human nervous system and increases muscle tension, improves human immunity, and scavenges reactive oxygen species (ROS) to protect cells from oxidative damage. The most important bioactive components in wine are anthocyanins, phenolic acids, flavonoids, tannins, and vitamins [1]. Anthocyanins are natural pigment formed by the combination of anthocyanidin and sugar via a glycosidic bond. They are non-toxic and widely present in the cellular fluid of plant flowers, fruits, stems, leaves, and other organs leading to coloration. They have many health functions for the human body such as antioxidant activity, anti-tumor, anti-cancer, and anti-inflammatory. For grape berries and wines, anthocyanins are one of the most important

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call