Abstract

Like many other benthic infaunal invertebrates, spionid polychaetes often lose portions of their bodies to predators, which affects their activities. Feeding palp loss and tail loss have been studied in several spionids, but the capacity for anterior tissue regeneration has not been compared in different species. The present study examines anterior tissue regeneration in two species, Dipolydora quadrilobata (Jacobi 1883) and Pygospio elegans Claparede 1863, in two laboratory experiments. Tissue removal treatments included removal of palps only, removal of anterior tissue through the first setiger, anterior tissue through the fifth setiger, all anterior tissue through half of the gill-bearing setigers, and all anterior tissue through the last gill-bearing setiger. Regeneration was monitored by capturing images of the worms and digitizing the area of regenerated anterior tissue or counting the number of segments that grew over time. Worms of both species regenerated anterior tissue regardless of the amount removed. Morphogenesis during regeneration followed a similar pattern in these two species regardless of the amount of anterior tissue lost, progressing from wound healing to formation of a recognizable prostomium and peristomium (“head”) by 6 days post-ablation. Palp and setal growth, addition of segments, and formation of nuchal organs and the ciliated food groove followed so that worms appeared to have re-grown “normal,” but smaller, “heads” and palps by 9–12 days following ablation. Over the course of 16 days, worms that lost more segments regenerated less tissue relative to their initial intact size and did so more slowly. There was no significant palp growth during the first 3 days following ablation. Rate of segment addition was directly related to the degree of tissue loss in D. quadrilobata. P. elegans added segments at similar rates whether 50 or 70% of the original segments was removed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.