Abstract

The functional organization of the primate prefrontal cortex has been a matter of debate with some models speculating dorso-ventral and rostro-caudal specialization while others suggesting that information is represented dynamically by virtue of plasticity across the entire prefrontal cortex. To address functional properties and capacity for plasticity, we recorded from different prefrontal sub-regions and analyzed changes in responses following training in a spatial working memory task. This training induces more pronounced changes in anterior prefrontal regions, including increased firing rate during the delay period, selectivity, reliability, information for stimuli, representation of whether a test stimulus matched the remembered cue or not, and variability and correlation between neurons. Similar results are obtained for discrete subdivisions or when treating position along the anterior-posterior axis as a continuous variable. Our results reveal that anterior aspects of the lateral prefrontal cortex of non-human primates possess greater plasticity based on task demands.

Highlights

  • The functional organization of the primate prefrontal cortex has been a matter of debate with some models speculating dorso-ventral and rostro-caudal specialization while others suggesting that information is represented dynamically by virtue of plasticity across the entire prefrontal cortex

  • We projected the location of each recording onto the AP axis of the prefrontal cortex and used that as a continuous variable for our analysis

  • An AP organization of the primate prefrontal cortex been suggested based on anatomical results revealing a hierarchical organization of prefrontal inputs and outputs[22,36,37]

Read more

Summary

Introduction

The functional organization of the primate prefrontal cortex has been a matter of debate with some models speculating dorso-ventral and rostro-caudal specialization while others suggesting that information is represented dynamically by virtue of plasticity across the entire prefrontal cortex. Evidence of learning-induced changes in task-related neuronal firing in primate PFC is scarce[10] and it is largely unknown if learning affects neuronal firing differentially across distinct areas of the prefrontal cortex This question has broader implications for the organization of the prefrontal cortex, which has been a matter of debate, as some studies have documented clear functional specialization between areas[11,12] and others reported no sign of differentiation[21,22], possibly due to different training regimes. Some neurophysiological evidence of dorsal–ventral and AP specialization has come from single-neuron recordings in animals naïve to training in cognitive tasks, which documented differences in selectivity for spatial and non-spatial information, and on progressive changes in response latency and receptive field size across the AP axis of the prefrontal cortex[23,24] This result too appears at odds with the lack of specialization observed in other studies in trained monkeys. Our results show that training in the task induces changes differentially across prefrontal subdivisions, which in some respects abolishes functional differences between areas, though other functional characteristics persist, and the capacity for plasticity itself differentiates anterior and posterior areas

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.