Abstract

Self-regulation, which is an individual's ability to control their emotions and behaviors in pursuit of goals, is a complex cognitive function that relies on distributed brain networks. Here, we used activation likelihood estimation (ALE) to conduct two large-scale meta-analyses of brain imaging studies of emotional regulation and behavioral regulation. We used single analysis of ALE to identify brain activation regions associated with behavioral regulation and emotion regulation. The conjunction results of the contrast analysis of the two domains showed that the crucial brain regions of dorsal anterior cingulate cortex (dACC), bilateral anterior insula (AI), and right inferior parietal lobule (IPL) are nested within the brain areas of the two regulation domains at the spatial and functional level. In addition, we assessed the coactivation pattern of the four common regions using meta-analytic connectivity modeling (MACM). The coactivation brain patterns based on the dACC and bilateral AI overlapped with the two regulation brain maps in a high proportion. Furthermore, the functional characters of the identified common regions were reverse-inferenced using the BrainMap database. Collectively, these results indicate that the brain regions of dACC and bilateral AI, playing a crucial role as a hub to other brain regions and networks by effective connectivity in self-regulation, are spatially nested in the brain network of behavioral regulation and emotion regulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call