Abstract

In this paper the behaviors of the temporomandibular joint (TMJ) with an anteriorly displaced disk without reduction and with a surgically repositioned one were compared with the response of a healthy disk during jaw opening. The movement of each joint was obtained imposing the same opening path between incisors and assuming that the movement of the condyle is determined by the passive action of the masticatory muscles and the restrictions imposed by the articulating surfaces and the ligaments. A fiber-reinforced porohyperelastic model was used to simulate the behavior of the articular disk. The influence of the friction coefficient in the diseased joint was also analyzed, finding that the final displacement of the complex condyle-disk was smaller as the friction coefficient increased. On the other hand, its displacement in the repositioned joint was different than in the healthy case because the artificial sutures used in the surgery do not fully stabilize the disk posteriorly as the retrodiscal tissue does. The stress response of the disk changed in both pathologic cases: in the displaced joint the highest stresses moved from the intermediate zone (healthy case) to the posterior band, and in the reconstructed one the most loaded zone moved posteriorly at total opening. Besides, local stress concentrations appeared in the neighborhood of the artificial sutures and therefore damage of the disk and releasing of the sutures might be possible postoperatively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.