Abstract

Anterior cruciate ligament (ACL)-derived cells have a character different from medial collateral ligament (MCL)-derived cells. However, the critical difference between ACL and MCL is still unclear in their healing potential and cellular response. The objective of this study was to investigate the mesenchymal differentiation property of each ligament-derived cell. Both ligament-derived cells differentiated into adipogenic, osteogenic, and chondrogenic lineages. In chondrogenesis, ACL-derived cells had the higher chondrogenic property than MCL-derived cells. The chondrogenic marker genes, Sox9 and α1(II) collagen (Col2a1), were induced faster in ACL-derived pellets than in MCL-derived pellets. Sox9 expression preceded the increase of Col2a1 in both pellet-cultured cells. However, the expression level of Sox9 and a ligament/tendon transcription factor Scleraxis did not parallel the increase of Col2a1 expression along with chondrogenic induction. The present study demonstrates that the balance between Sox9 and Scleraxis have an important role in the chondrogenic differentiation of ligament-derived cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.