Abstract

The central organization of antennular motoneurons in the brain of the spiny lobster, Panulirus argus, was analyzed by combining biocytin backfills with serial reconstructions of the antennular nerves and the brain. Eighty-nine to 99 antennular motoneurons occur in each hemibrain. The somata of the motoneurons are distributed in a consistent pattern in two complex soma clusters, the ventral paired mediolateral cluster of the deutocerebrum and the dorsal unpaired median cluster of the tritocerebrum. The motoneurons arborize ipsilaterally in the lateral and median antennular neuropils and the tegumentary neuropil. The backfills indicate a minimum of five morphological types of motoneurons with different arborization patterns. The innervation pattern of the motoneurons, together with previously reported innervation patterns of antennular sensory afferents, suggest that the lateral antennular neuropil is a lower motor center driving local antennular reflexes in response to chemical and mechanical stimulation of the antennule, whereas the median antennular neuropil is a lower motor center for equilibrium responses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call