Abstract

In this paper and presentation, we will focus on different aspects of backscattering-based wireless communication and power transfer to small biomedical implants. We will present three different antenna topologies for data and power transfer through tissue, in vitro and in vivo studies on implantable intracranial pressure (ICP) sensors and give insight and analysis on wireless link reliability in tissue environment. We will also present radio frequency identification (RFID) -based implant platform and communication method. Moreover, we will focus on differences and challenges of in vivo environment compared to laboratory phantoms and tissue models. In our studies, different types of implantable antennas have been tested to investigate reliability, accuracy and sensitivity of the brain implants: a hybrid near field-far field system with a piezoresistive sensor for ICP monitoring, a UHF band spilt-ring resonator system and LC tank based miniature implantable antenna. This paper will present these implant antennas and wireless power transfer in tissue environment present in human head.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.