Abstract
A comparative investigation of the antennal circulatory organs in representatives of the Onychophora, all subtaxa of the Myriapoda and numerous taxa of the Hexapoda (comprising a total of 54 species) revealed an unexpected diversity in structure and function. In the Onychophora, antennal vessels exist which are connected to the enlarged anterior end of the aorta dorsal to the brain. In the Chilopoda, Diplopoda and Symphyla, antennal vessels exist which originate from the dorsal vessel caudal to the brain. They extend under the optic lobes, lateral to the circumoesophageal connectives, into the antennae. In the Hexapoda, the investigations include representatives of all higher taxa, apart from the Paraneoptera and the Holometabola. Generally, antennal vessels exist. In the Diplura, they originate from the anterior end of the aorta in front of the brain. In all other insects the antennal vessels are separate from the dorsal vessel. Their proximal ends form ampullary enlargements which are attached to the frontal cuticle near the antenna bases. They communicate via valved ostia with the haemolymph sinus in front of the brain. In the Archaeognatha, Zygentoma, Odonata, certain Plecoptera and the Notoptera, no muscles are connected to these organs. In all other groups the ampullae are pulsatile as a result of associated muscles (“antennal hearts”). These muscles diverge widely in their attachments and act either as compressors (Dermaptera) or dilators of the ampullae (Embioptera, Blattopteroidea, Orthopteroidea, and some Plecoptera). In the Collembola and Ephemeroptera, special antennal circulatory organs are lacking. In some forms the anatomical arrangement of the inner organs, in conjunction with short diaphragms at the antenna bases, apparently leads to a channelling of haemolymph flow. This condition may be explained by the very short antennae of these insects and is considered as a convergent and apomorphic state in these taxa. The antennal vessels are supposed to be homologous within the Tracheata and to represent the lateral arteries of the antenna segment. An origin from the dorsal vessel is considered an ancestral state, which was lost in the stem lineage of the Ectognatha. Specific space constraints within the cephalic capsule are discussed as the possible reason for this loss. The evolution of pulsatile antennal circulatory organs in the Neoptera is the result of the association of muscles with the proximal ampullary ends of the antennal vessels. The attachments and innervation of these muscles indicate a derivation from precerebral pharyngeal dilators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.