Abstract

For simultaneous wireless information and power transfer in multiple-input multiple-output broadcast systems, we propose to investigate the antenna selection (AS) design problem. The problem is formulated as joint AS and transmit covariance matrix design optimization problem which maximizes the achievable rate from the transmitter to the information-decoding receiver subject to the energy-harvesting constraint and the transmit power constraint. To solve the problem, we relax the binary constraints on the AS matrices and restrict the transmit covariance matrix to be diagonal. The AS matrices and the transmit covariance matrix are optimized iteratively by our proposed iterative AS algorithm. We also propose a low-complexity non-iterative norm-based algorithm which optimizes the AS matrices and the transmit covariance matrix sequentially. It is shown from simulation results that the achievable rates of proposed algorithms approach that of the AS scheme which is optimized by exhaustive search.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.