Abstract

Tip enhanced IR spectra and imaging have been widely used in cutting-edge studies for the in-depth understanding of the composition, structure and function of interfaces at the nanoscale. However, molecular monolayer sensitivity has only been demonstrated on solid/gas interfaces. In aqueous environment, the reduced sensitivity due to strong damping of the cantilever oscillation and background IR absorption extremely limits the practical applications of tip enhanced IR nanospectroscopy. Here, we demonstrate hypersensitive nanoscale IR spectra and imaging in aqueous environment with the combination of photoinduced force (PiF) microscopy and resonant antennas. The highly confined electromagnetic field inbetween the tip end and antenna extremely amplifies the photoinduced force to the detectable level, while the excitation via plasmon internal reflection mode minimizes the environmental absorption. A polydimethylsiloxane (PDMS) layer (~1-2 nm thickness) functionalized on the AFM tip has been successfully identified in water with antennas of different sizes. Sampling volume of ~604 chemical bonds from PDMS was demonstrated with sub-10 nm spatial resolution confirmed by electric (E) field distribution mapping on antennas, which strongly suggests the desired requirements for interfacial spectroscopy. This platform demonstrates for the first time the application of photoinduced force microscopy in aqueous environments, providing a brand-new configuration to achieve highly enhanced nanoscale IR signals, which is extremely promising for future research of interfaces and nanosystems in aqueous environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.