Abstract

Recently, up-conversion luminescent (UCL) materials have caught extensive sight on account of their excellent biocompatibility and weak automatic fluorescence background, but the low optical signal makes researchers shy away. Organic dye-sensitized UCL materials can improve the low optical signal drawback of UCL and rejuvenate it with adjustable optical properties and unique antenna effects. In this work, an efficient, simple and selective electrochemiluminescence (ECL) sensing platform was developed for determination of enrofloxacin (ENR). 3,4,9,10-perylene tetracarboxylic acid (PTCA) was successfully used as an “antenna” to improve the ECL performance of the UCL nanoparticles (PEI-NaYF4: Yb, Er) due to its appropriate excitation spectrum position and superior electron transfer rate. The specific recognition function of the aptamer enabled the sensor to eliminate the interference from conspecific impurity. In the presence of ENR, the specific combination of ENR with aptamer made the aptamer fall from surface of the electrode, thus we could see a considerable enhancement of signal. Under the most favourable conditions, the aptasensor based on antenna effect displayed a wide detection range (1.0 × 10−14∼1.0 × 10−6 M), low limit of detection (LOD = 3.0 × 10−15 M) and receivable recoveries (96.0%–102.4%) during water samples analysis. At this point, antenna effect provides a powerful strategy to expand the application of UCL in the field of ECL biosensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.