Abstract

AbstractEnhanced surface melt over the ice shelves of the Antarctic Peninsula (AP) is one of the precursors to their collapse, which can be proceeded by accelerated ground glacier flow and increased contribution to sea level rise. With the collapse of Larsen A and B, and the major 2017 calving event from Larsen C, whether Larsen C is bound for a similar fate has received increasing attention. Here, the interannual variation of regional circulation over the AP region is studied using the Empirical Orthogonal Function (EOF) / Principal Component (PC) analysis on the sea level pressure of ERA5 reanalysis. The EOF modes capture the variations of depth, location and extent of Amundsen Sea Low and Weddell Sea Low in each season. Statistically significant positive correlations exist between Larsen C surface temperature and the PC time series of EOF mode 1 in winter and spring through northerly/northwesterly wind anomalies west of the AP. The PC time series of EOF mode 2 is negatively correlated with Larsen C surface temperature in autumn and summer and surface melt in summer, all due to southerly wind anomalies east of the AP. Surface energy budget analysis associated with EOF mode 2 shows that downwelling longwave radiation over Larsen C is negatively statistically significantly, correlated with EOF mode 2 and is the major atmospheric forcing regulating the variation of Larsen C surface melt. Positively enhanced EOF mode 2 since 2004 is responsible for the recent cooling and decline of surface melt over Larsen C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call