Abstract

The serotonin transporter (SERT) terminates serotonergic neurotransmission by the rapid removal of serotonin (5-hydroxytryptamine, 5-HT) from the extracellular space back into serotonergic neurons. SERT therefore controls the concentration of extracellular 5-HT, and thus one mechanism to regulate the efficacy of serotonergic neurotransmission is via modulation of the density of SERT molecules on the cell membrane. We have studied the effects of prolonged exposure to various selective serotonin re-uptake inhibitors (SSRIs), as well as cocaine and the transport substrates 5-HT and 3,4-methylenedioxy-methamphetamine (MDMA), on SERT cell surface expression in cultured serotonergic neurons. This was achieved via quantification of the amount of cell surface-expressed SERT molecules using antibody detection combined with confocal laser scanning microscopy. Our results show that exposure to the SSRIs citalopram, fluoxetine, sertraline and paroxetine all induced SERT internalization, but with different efficacies. The substrates 5-HT and MDMA also induced SERT internalization, while cocaine elevated SERT cell surface expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.