Abstract

Although biomaterial-based triboelectric nanogenerators (Bio-TENGs) for use in wearable electronics and implantable sensors have been developed, power generation is not suitable for satisfying the basic requirements for practical applications. Here, to greatly enhance output performances of Bio-TENG devices, an antagonistic approach of diatom frustules (DFs) with amine and fluorine chemical functionalizations is reported. The DFs are treated with piranha solution to increase the density of hydroxyl groups and tribo-positive and tribo-negative composite films are designed with antagonistically functionalized DFs. The tribo-positive composites having electron donating functionality consist of aminated DFs and cellulose nanocrystals (CNCs), while the tribo-negative composite is composed of fluorinated DFs and polydimethylsiloxane (PDMS). An antagonistically and chemically functionalized TENG (ACF TENG) with an efficient contact area of 9.6 cm2 under a force of 8 N and a frequency of 5Hz exhibits an output voltage of 248V, a short-circuit current of 16.4 µA, and a power density of 2.01 W m-2 , which is 16.6 times higher than a reference (CNC:PDMS) TENG. This study shows a simple antagonistic approach for chemical functionalization as an efficient method to manipulate the tribo-polarity of bio-additives for enhancing power generation of Bio-TENGs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.