Abstract

Salmonella enteritidis is an important foodborne pathogen that has caused multiple outbreaks of infection associated with poultry and egg consumption. Thus, the prevention and inhibition of Salmonella enteritidis infection are of great concern. Lactic acid bacteria have anti-pathogenic activity; however, their underlying mechanisms and modes of action have not yet been clarified. In this study, the antibacterial mechanism of Lactobacillus reuteri S5 (L. reuteri S5) against Salmonella enteritidis ATCC13076 (S. enteritidis ATCC13076) was studied by different methods. We found that L. reuteri S5 was able to form a stable biofilm formation, colonizing the entire intestinal tract of chickens. In addition, bacterial cultures and the cell-free supernatant (CFS) of L. reuteri S5 inhibited SE ATCC13076 growth, and this growth inhibition was also observed in the co-culture assay. This effect may be predominantly caused by antimicrobial metabolites produced by L. reuteri S5. Furthermore, treatment with the CFS of L. reuteri S5 resulted in a significant reduction in the expression of Salmonella virulence, motility and adhesion genes and a significant reduction in the motility ability and inhibitory effect on biofilm formation. In addition, the damage to the membrane structure and intracellular structure induced by the CFS of L. reuteri S5 could be observed on Transmission electron microscopy images and dodecyl sulfate, sodium salt (SDS)-Polyacrylamide gel electrophoresis confirmed the disruptive action of the CFS of L. reuteri S5 on the cytoplasmic membrane. Our findings demonstrate that L. reuteri S5, an intestinal Lactobacillus species associated with chicken health, is able to form biofilm and stably colonize chicken intestines. It also possesses anti-SE activity, preventing SE growth, inhibits the expression of SE genes involved in adhesion and invasion, virulence and cell membrane integrity, inhibits SE biofilm formation and motility, damages or destroys bacterial structures, and inhibits intracellular protein synthesis. L. reuteri S5 therefore has potential applications as a probiotic agent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.