Abstract

This article extends our initial investigation of the interactions between dopamine and glutamate receptor systems after acute exposure to ethanol. DARPP-32 (dopamine and cyclic adenosine monophosphate-regulated phosphoprotein of approximate molecular weight 32 kDa) is an important regulator of protein phosphatase-1 that in turn regulates a large number of effectors, including the NMDA receptor. We measured the protein kinase A (PKA)-mediated phosphorylation of DARPP-32 and the NR1 subunit of the NMDA receptor. Initially, corpus striatum was assayed after intraperitoneal treatment of mice with the D1 agonist SKF82958, the D2 agonist and anticraving drug bromocriptine, or ethanol. In other experiments we blocked D1 receptors with the selective D1 antagonist SCH23390 or blocked D2 receptors with the selective D2 antagonist eticlopride. Finally, we examined combinations of some dopaminergic drugs with and without ethanol. SKF82958 alone significantly increased PKA-mediated phosphorylation of both DARPP-32 and NR1. Bromocriptine alone had no effect on pDARPP-32 or on pNR1. However, when D1 receptors were blocked, bromocriptine reduced the PKA-mediated phosphorylation of both DARPP-32 and NR1. Coincident treatment with bromocriptine and ethanol reversed both of these effects with D1 receptors blocked. The combination of eticlopride (D2 blocker) and SF82958 (D1 agonist) did not significantly alter either pDARPP-32 or pNR1. These data demonstrate antagonistic effects of acute ethanol exposure on D1 signaling in vivo and the potential of acute in vivo challenge protocols to help fill gaps in the understanding of ethanol's effects on protein phosphorylation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.