Abstract

Aeromonas hydrophila is one of the most prevalent pathogenic bacteria in largemouth bass. The use of antibiotics to inhibit A. hydrophila poses a significant threat to fish and environmental safety. Bacillus velezensis, a safe bacterium with probiotic and antibacterial characteristics, is an ideal candidate for antagonizing A. hydrophila. This study explored the antagonistic effects of B. velezensis FLU-1 on A. hydrophila in vivo and in vitro. In addition, we explored the antimicrobial peptides (AMPs) produced by strain FLU-1 and clarified the underlying antibacterial mechanisms. The results showed that strain FLU-1 could inhibit a variety of fish pathogens, including A. hydrophila. The challenge test showed that dietary supplementation with B. velezensis FLU-1 significantly improved the survival rate of largemouth bass and reduced the bacterial load in liver. Subsequently, the AMP LCI was isolated from B. velezensis FLU-1 and was found to be effective against A. hydrophila in vitro and in vivo. Transcriptomic analysis revealed that LCI downregulated the genes associated with flagellar assembly and peptidoglycan synthesis in A. hydrophila. Phenotypic test results showed that LCI disrupted the membrane integrity, markedly reduced the biofilm biomass and diminished the swimming motility of A. hydrophila. Furthermore, the results showed that LCI bound to the genomic DNA of A. hydrophila and destroyed the DNA structures. Overall, these findings elucidated the mechanism of action of LCI against A. hydrophila at the phenotypic and physiological levels. This study suggests that B. velezensis FLU-1 and its AMP LCI could serve as antibiotic alternatives for controlling pathogens in aquaculture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.