Abstract

Seed germination is often induced by a pulse of red light perceived by phytochrome and cancelled by a subsequent pulse of far-red light. When the pulse of red light is followed by several hours of darkness, a pulse of far-red light is no longer effective and prolonged far-red is necessary to block germination. The aim was to investigate whether the red light pulse and prolonged far-red light act on the same or different processes during germination of Datura ferox seeds. Forty-five hours after the inductive red light pulse, germination could not be blocked by one pulse or six hourly pulses of far-red light, but was significantly reduced by 6 h of continuous far-red light. The pulse of red light increased embryo growth potential and the activities of beta-mannanase and beta-mannosidase extracted from the micropylar region of the endosperm. Continuous far-red light had no effect on embryo growth potential or beta-mannosidase activity, but severely reduced the activity of beta-mannanase. The effect of far-red light had the features of a high-irradiance response of phytochrome. Both germination and beta-mannanase activity were restored by a pulse of red light given after the end of the continuous far-red treatment. It is concluded that the low-fluence response and the high-irradiance response modes of phytochrome have antagonistic effects on seed germination and that the control of beta-mannanase activity is one process where this antagonism is established.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call