Abstract

Calcitonin-gene-related peptide (CGRP) plays a key role in migraine pathophysiology and more specifically in the mechanisms underlying peripheral and central sensitization. Here, we explored the interaction of CGRP with other pain mediators relevant for neuronal sensitization in an animal model of chronic migraine. Male Sprague-Dawley rats were exposed to nitroglycerin (NTG, 5 mg/kg, i.p.) or vehicle co-administered with the CGRP receptor antagonist olcegepant (2 mg/kg i.p.), or its vehicle, every other day over a 9-day period. Twenty-four hours after the last injection of NTG (or vehicle), behavioral test and ex vivo analysis were performed. Olcegepant attenuated NTG-induced trigeminal hyperalgesia in the second phase of the orofacial formalin test. Interestingly, it also reduced gene expression and protein levels of CGRP, pro-inflammatory cytokines, inflammatory-associated miRNAs (miR-155-5p, miR-382-5p, and miR-34a-5p), and transient receptor potential ankyrin channels in the medulla–pons area, cervical spinal cord, and trigeminal ganglia. Similarly, olcegepant reduced the NTG-induced increase in CGRP and inflammatory cytokines in serum. The findings show that the activation of the CGRP pathway in a migraine animal model was associated to the persistent activation of inflammatory pathways, which was paralleled by a condition of hyperalgesia. These molecular events are relevant for informing us about the mechanisms underlying chronic migraine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call