Abstract

Although emerging number of data supports the role of glutamate receptors and the potential of their antagonists in anxiety disorders, the involvement of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptors in anxiety is less well characterized. To evaluate the anxiolytic potential of 2,3-benzodiazepine (2,3BDZ) type AMPA receptor antagonists in various models of anxiety. Whole-cell currents, hippocampal field potentials, elevated plus maze (EPM), meta-chlorophenylpiperazine (mCPP)-induced anxiety model, Vogel test in rats and light-dark test (LD) in mice were used to determine AMPA/kainite receptor properties and anxiolytic-like activity of a series of 2,3BDZ-type compounds. The reference compound GYKI 52466 was proved active in two anxiety models in non-sedative doses: minimal effective dose (MED) was especially low in EPM (0.01 mg/kg) GYKI 53405 and GYKI 53655 showed anxiolytic-like activity in two tests (EPM and mCPP). EGIS-8332 was active in EPM and LD while EGIS-9637 showed anxiolytic-like potency in EPM, mCPP and Vogel model. EGIS-10608 was the most effective compound among 2,3BDZs tested in EPM and Vogel models (MEDs are 0.01 and 2.5 mg/kg, respectively). 2,3BDZs were active in anxiety models at doses lower than those produced sedative effects. NBQX showed anxiolytic-like activity in EPM only (3 mg/kg). The results show that non-competitive AMPA receptor antagonists can profoundly block anxiety-like behavior in rodents independently from their motor depressant activity. However, the sedative properties at higher doses might limit their therapeutic utility as new anxiolytic drugs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call