Abstract

Apolipoprotein CIII (apoCIII), a lipid-binding protein involved in the transport of triglycerides and cholesterol in the plasma, is synthesized primarily in the liver and the intestine. A cis-acting regulatory element, C3P, located at -90 to -66 upstream from the apoCIII gene transcriptional start site (+1), is necessary for maximal expression of the apoCIII gene in human hepatoma (HepG2) and intestinal carcinoma (Caco2) cells. This report shows that three members of the steroid receptor superfamily of transcription factors, hepatocyte nuclear factor 4 (HNF-4), apolipoprotein AI regulatory protein 1 (ARP-1), and Ear3/COUP-TF, act at the C3P site. HNF-4 activates apoCIII gene expression in HepG2 and Caco2 cells, while ARP-1 and Ear3/COUP-TF repress its expression in the same cells. HNF-4 activation is abolished by increasing amounts of ARP-1 or Ear3/COUP-TF, and repression by ARP-1 or Ear3/COUP-TF is alleviated by increasing amounts of HNF-4. HNF-4 and ARP-1 bind with similar affinities to the C3P site, suggesting that their opposing transcriptional effects may be mediated by direct competition for DNA binding. HNF-4 and ARP-1 mRNAs are present within the same cells in the liver and intestine, and protein extracts from hepatic tissue, HepG2, and Caco2 cells contain significantly more HNF-4 than ARP-1 or Ear3/COUP-TF binding activities. These findings suggest that the transcription of the apoCIII gene in vivo is dependent, at least in part, upon the intracellular balance of these positive and negative regulatory factors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.