Abstract

We aimed to investigate the role of the miR‐29b and its effect on TGF‐β3 pathway in vascular and valvular calcification in a rat model of calcific aortic valve diseases (CAVD). A rat model of CAVD was established by administration of warfarin plus vitamin K. The expression levels of miR‐29b, osteogenic markers and other genes were determined by qRT‐PCR, Western blot and/or immunofluorescence and immunohistochemistry. The calcium content and alkaline phosphatase (ALP) activity were measured. The calcium content, ALP activity and osteogenic markers levels in calcified aorta and aortic valve were augmented compared to controls. The expression of miR‐29b, p‐Smad3, and Wnt3 and β‐catenin was significantly up‐regulated, whereas TGF‐β3 was markedly down‐regulated. However, compared with the CAVD model group, the calcium content and ALP activity in rats treated with antagomiR‐29b were significantly decreased, and antagomiR‐29b administration reversed the effects of CAVD model on the expression of miR‐29b and osteogenic markers. Inhibition of miR‐29b in CAVD rats prevented from vascular and valvular calcification and induced TGF‐β3 expression, suggesting that the miR‐29b/TGF‐β3 axis may play a regulatory role in the pathogenesis of vascular and valvular calcification and could play a significant role in the treatment of CAVD and other cardiovascular diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.