Abstract

Ant-related oviposition in facultatively myrmecophilous lycaenid butterflies is common, but not universal. In fact, our knowledge of ant-related oviposition in lycaenids is based on some common species (e.g., Rekoa marius, Allosmaitia strophius, Parrhasius polibetes), which limits generalizations about these systems. In this study, we experimentally investigated whether the oviposition pattern of the florivorous lycaenid Leptotes cassius was influenced by the presence of Camponotus ants and whether larvae were attended, rather than attacked, by ants. This might be evidence of myrmecophily. Both L. cassius and Camponotus ants occur on Bionia coriacea, an extrafloral nectaried legume shrub that grows in the Brazilian cerrado. Plants were randomly assigned to ant-present and ant-excluded treatments and were observed twice throughout the short reproductive season. Larvae of L. cassius were tended by ants, whose attendance was characterized by active antennation on the last body segments of the caterpillars. Therefore, Camponotus can be considered a partner of L. cassius. Lycaenid abundance was on average 1.9- and 1.21-fold higher in plants with ants in each sampling period, respectively, indicating a tendency of L. cassius to occur in plants with ants. Nonetheless, results were not statistically significant, suggesting that in this case ants are not a major cue for lycaenid oviposition. In many ant–lycaenid mutualisms, butterfly immatures benefit from reduced parasitism rates. However, no L. cassius immature, regardless of ant presence or absence, was parasitized. Furthermore, larvae may occur inside flower buds that may provide protection from natural enemies; thus, ants may not be required for immature protection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call