Abstract
Ants often form mutualistic interactions with aphids, soliciting honeydew in return for protective services. Under certain circumstances, however, ants will prey upon aphids. In addition, in the presence of ants aphids may increase the quantity or quality of honeydew produced, which is costly. Through these mechanisms, ant attendance can reduce aphid colony growth rates. However, it is unknown whether demand from within the ant colony can affect the ant-aphid interaction. In a factorial experiment, we tested whether the presence of larvae in Lasius niger ant colonies affected the growth rate of Aphis fabae colonies. Other explanatory variables tested were the origin of ant colonies (two separate colonies were used) and previous diet (sugar only or sugar and protein). We found that the presence of larvae in the ant colony significantly reduced the growth rate of aphid colonies. Previous diet and colony origin did not affect aphid colony growth rates. Our results suggest that ant colonies balance the flow of two separate resources from aphid colonies- renewable sugars or a protein-rich meal, depending on demand from ant larvae within the nest. Aphid payoffs from the ant-aphid interaction may change on a seasonal basis, as the demand from larvae within the ant colony waxes and wanes.
Highlights
Ants (Hymenoptera: Formicidae) often engage in mutualistic interactions with aphids (Hemiptera: Sternorrhyncha, previously Homoptera; [1]), receiving carbohydrate-rich honeydew in return for a number of protective and sanitary services [2,3,4]
In this study we investigated whether the presence of larvae in ant colonies, and previous diets fed to ants, affected aphid fitness
Lasius niger ants were observed to forage on the plants and tended aphids by collecting honeydew and carrying it to the nest
Summary
Ants (Hymenoptera: Formicidae) often engage in mutualistic interactions with aphids (Hemiptera: Sternorrhyncha, previously Homoptera; [1]), receiving carbohydrate-rich honeydew in return for a number of protective and sanitary services [2,3,4]. In this symbiotic interaction, behavioural and physiological adaptations in both species groups ensure that interacting individuals are often co-located in space and time. Evolutionary adaptations in ants range from herding aphids using both physical means (e.g., pulling off alate aphid wings; Kunkel 1973, as cited by [5]). Costs may exceed benefits causing the net effect of the interaction to switch sign from mutualism to antagonism, with potentially important consequences for community dynamics [18,19,20]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.