Abstract

Operation scheduling (OS) is a fundamental problem in mapping an application to a computational device. It takes a behavioral application specification and produces a schedule to minimize either the completion time or the computing resources required to meet a given deadline. The OS problem is NP-hard; thus, effective heuristic methods are necessary to provide qualitative solutions. We present novel OS algorithms using the ant colony optimization approach for both timing-constrained scheduling (TCS) and resource-constrained scheduling (RCS) problems. The algorithms use a unique hybrid approach by combining the MAX-MIN ant system metaheuristic with traditional scheduling heuristics. We compiled a comprehensive testing benchmark set from real-world applications in order to verify the effectiveness and efficiency of our proposed algorithms. For TCS, our algorithm achieves better results compared with force-directed scheduling on almost all the testing cases with a maximum 19.5% reduction of the number of resources. For RCS, our algorithm outperforms a number of different list-scheduling heuristics with better stability and generates better results with up to 14.7% improvement. Our algorithms outperform the simulated annealing method for both scheduling problems in terms of quality, computing time, and stability

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.