Abstract
Abstract An ant colony optimization (ACO)-based methodology for solving the multi-mode resource-constrained project scheduling problem (MRCPSP) considering both renewable and nonrenewable resources is presented. With regard to the MRCPSP solution consisting of activity sequencing and mode selection, two levels of pheromones are proposed to guide search in the ACO algorithm. Correspondingly, two types of heuristic information and probabilities as well as related calculation algorithms are introduced. Nonrenewable resource-constraint and elitist-rank strategy are taken into account in updating the pheromones. The flowchart of the proposed ACO algorithm is described, where a serial schedule generation scheme is incorporated to transform an ACO solution into a feasible schedule. The parameter-selection and the resultant performance of the proposed ACO methodology are investigated through a series of computational experiments. It is expected to provide an effective alternative methodology for solving the MRCPSP by utilizing the ACO theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.