Abstract

In analog filter design, discrete components values such as resistors (R) and capacitors (C) are selected from the series following constant values chosen. Exhaustive search on all possible combinations for an optimized design is not feasible. In this chapter, we present an application of the Ant Colony Optimization (ACO) technique for optimal filter design considering different manufacturing series for both the resistors and capacitors. Three variants of the Ant Colony Optimization are applied, namely, the AS (Ant System), the MMAS (Min-Max AS) and the ACS (Ant Colony System), for the optimal sizing of the Low-Pass Butterworth filter. Different optimal designs of the filter are provided depending on the preference between two conflicting factors, namely the cutoff frequency and selectivity factor. SPICE simulations are used to validate the obtained results/performances. A comparison with published works is also highlighted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.