Abstract

Fuzzy Ant-Miner algorithm processes data with nominal class and has the disadvantage of not treating the data with continuous class. In this paper, after presenting the Fuzzy Ant Miner algorithm, the authors propose a new learning method to partition heterogeneous data with continuous class. This method in a first step finds the optimal path between the data using algorithms of ants. Distance adopted in their optimization method takes into account all types of data. The second step vise to divide the data into homogeneous groups by browsing the optimal path found. A new test probability is estimated based on the distance and the amount of pheromone deposited by ants in the transitions between the data. A third step is to find the prototype of each cluster to identify the cluster membership of any new data injected.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.