Abstract
The minimum-energy multicast tree problem aims to construct a multicast tree rooted at the source node and spanning all the destination nodes such that the sum of transmission power at non-leaf nodes is minimized. However, aggressive power assignment at non-leaf nodes, although conserving more energy, results in multicast trees that suffer from higher hop count and jeopardizes delay-sensitive applications, signifying a clear tradeoff between energy efficiency and delay. This article formulates these issues as a constrained Steiner tree problem, and describes a distributed constrained Steiner tree algorithm, which jointly conserves energy and bounds delay for multicast routing in ad hoc networks. In particular, the proposed algorithm concurrently constructs a constrained Steiner tree, performs transmission power assignment at non-leaf nodes, and strives to minimize the sum of transmission power of non-leaf nodes, subject to the given maximum hop count constraint. Simulation results validate the effectiveness and reveal the characteristics of the proposed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Autonomous and Adaptive Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.