Abstract

The minimum-energy multicast tree problem aims to construct a multicast tree rooted at the source node and spanning all the destination nodes such that the sum of transmission power at non-leaf nodes is minimized. However, aggressive power assignment at non-leaf nodes, although conserving more energy, results in multicast trees that suffer from higher hop count and jeopardizes delay-sensitive applications, signifying a clear tradeoff between energy efficiency and delay. This article formulates these issues as a constrained Steiner tree problem, and describes a distributed constrained Steiner tree algorithm, which jointly conserves energy and bounds delay for multicast routing in ad hoc networks. In particular, the proposed algorithm concurrently constructs a constrained Steiner tree, performs transmission power assignment at non-leaf nodes, and strives to minimize the sum of transmission power of non-leaf nodes, subject to the given maximum hop count constraint. Simulation results validate the effectiveness and reveal the characteristics of the proposed algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.