Abstract

The present study endeavours to substantially contribute towards alleviating the global water scarcity problem. The task entailed designing a computational model of a renewable energy-based evaporator. Using ANSYS Fluent, the CFD simulations of a three-dimensional conventional continuous single slope, single basin solar still were carried out in summer at 23.79°N, 86.43°E coordinates. With the optimized inclination condensation angle of 29° and water depth at 1 cm, the solar still recorded the highest hourly drinking water, about 1.5 kg m−2, at 11:00 h. The continuous production resulted in a water collection rate of 8.6 kg m−2 day −1, encompassing the production of all previous models. Additionally, compared with the literature correlation for solar still simulated mass, the Power model calculation was the closest, with a 12.4% variation. Furthermore, the study showcases that CFD is an economical, efficient, and easily diagnosable technique for designing solar stills.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call