Abstract

This paper describes a discussion-bot that provides answers to students’ questions about the Data Science master program at the University of Lyon 1. Based on a seq2seq architecture combined with a supervised memory module, the bot identifies the questioner’s interest and encodes relevant information from the past conversation to provide personalized answers. A dialogue generator based on hand-crafted dialogues was built to train our model on these synthetic dialogues. The agent and its memory are adaptable to another context by modifying the intention database of the generator. The model was deployed and the results show that the discussion-bot meets most students’ learning requests. We discuss further directions that might be taken to increase the model's effectiveness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.