Abstract
Spatial approximate keyword queries consist of a spatial condition and a set of keywords as the fuzzy textual conditions, and they return objects labeled with a set of keywords similar to queried keywords while satisfying the spatial condition. Such queries enable users to find objects of interest in a spatial database, and make mismatches between user query keywords and object keywords tolerant. With the rapid growth of data, spatial databases storing objects from diverse geographical regions can be no longer held in main memories. Thus, it is essential to answer spatial approximate keyword queries over disk resident datasets. Existing works present methods either returns incomplete answers or indexes in main memory, and effective solutions in disks are in demand. This paper presents a novel disk resident index RMB-tree to support spatial approximate keyword queries. We study the principle of augmenting R-tree with capacity of approximate keyword searching based on existing solutions, and store multiple bitmaps in R-tree nodes to build an RMB-tree. RMB-tree supports spatial conditions such as range constraint, combined with keyword similarity metrics such as edit distance, dice etc. Experimental results against R-tree on two real world datasets demonstrate the efficiency of our solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.