Abstract

We present a novel framework for answering complex questions that relies on question decomposition. Complex questions are decomposed by a procedure that operates on a Markov chain, by following a random walk on a bipartite graph of relations established between concepts related to the topic of a complex question and subquestions derived from topic-relevant passages that manifest these relations. Decomposed questions discovered during this random walk are then submitted to a state-of-the-art Question Answering (Q/A) system in order to retrieve a set of passages that can later be merged into a comprehensive answer by a Multi-Document Summarization (MDS) system. In our evaluations, we show that access to the decompositions generated using this method can significantly enhance the relevance and comprehensiveness of summary-length answers to complex questions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.