Abstract
Representation learning for knowledge graphs (KGs) has focused on the problem of answering simple link prediction queries. In this work we address the more ambitious challenge of predicting the answers of conjunctive queries with multiple missing entities. We propose Bidirectional Query Embedding (BiQE), a method that embeds conjunctive queries with models based on bi-directional attention mechanisms. Contrary to prior work, bidirectional self-attention can capture interactions among all the elements of a query graph. We introduce two new challenging datasets for studying conjunctive query inference and conduct experiments on several benchmark datasets that demonstrate BiQE significantly outperforms state of the art baselines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.