Abstract
Rational coefficients of special functions in scattering amplitudes are known to simplify on singular surfaces, often diverging less strongly than the naïve expectation. To systematically study these surfaces and rational functions on them, we employ tools from algebraic geometry. We show how the divergences of a rational function constrain its numerator to belong to symbolic powers of ideals associated to the singular surfaces. To study the divergences of the coefficients, we make use of p-adic numbers, closely related to finite fields. These allow us to perform numerical evaluations close to the singular surfaces in a stable manner and thereby characterize the divergences of the coefficients. We then use this information to construct low-dimensional Ansätze for the rational coefficients. As a proof-of-concept application of our algorithm, we reconstruct the two-loop 0 → q overline{q} γγγ pentagon-function coefficients with fewer than 1000 numerical evaluations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.