Abstract
To study arithmetic structures of natural numbers, we introduce a notion of entropy of arithmetic functions, called anqie entropy. This entropy possesses some crucial properties common to both Shannon's and Kolmogorov's entropies. We show that all arithmetic functions with zero anqie entropy form a C*-algebra. Its maximal ideal space defines our arithmetic compactification of natural numbers, which is totally disconnected but not extremely disconnected. We also compute the $K$-groups of the space of all continuous functions on the arithmetic compactification. As an application, we show that any topological dynamical system with topological entropy $\lambda$, can be approximated by symbolic dynamical systems with entropy less than or equal to $\lambda$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.