Abstract
Nitrification of centrate from anaerobic sewage sludge digestion presents a major opportunity as an electron acceptor in anoxic biogas biodesulphurisation. Nitritation and nitrification inhibition by free ammonia was detected at laboratory scale, but was avoided during the scale-up operation in a 4 m3 reactor treating ammonium loads up to 19 gN m−3 h−1. This nitrate-rich stream was fed to two pilot-scale suspended biomass bioreactors (SBBs) treating real biogas for 220 days. After an adaptation period of 21 days, nitrate and alkalinity concentrations in the liquid medium below 10 mgN L−1 and 100 mgCaCO3 L−1 were found to limit hydrogen sulphide (H2S) oxidation. Once controlled, 95% of the H2S was removed in SBB1 and 90% in SBB2, at a gas residence time (GRT) of 5.9 min, treating average values of 321 ± 205 ppmv and 457 ± 205 ppmv, respectively. Outlet H2S concentrations of 16 ± 24 ppmv in SBB1 and 46 ± 39 ppmv in SBB2 were obtained, which are below the requirements of biogas combustion heat and power engines. Unlike H2S, siloxanes were not removed with these GRTs. The results demonstrate the feasibility of the combined process for H2S treatment, potential valorisation of precipitated elemental sulphur and a reduction in the reagents currently used to control H2S.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.