Abstract

The intracellular signaling pathways that control O(2) deprivation (anoxia)-induced apoptosis have not been fully defined in lung epithelial cells. We show here that the lung epithelial cell line A549 releases cytochrome c and activates caspase-9 followed by DNA fragmentation and plasma membrane breakage in response to anoxia. The antiapoptotic protein Bcl-X(L) prevented the anoxia-induced cell death by inhibiting the release of cytochrome c and caspase-9 activation. A549 cells devoid of mitochondrial DNA (rho(o)-cells) and lacking a functional electron transport chain were resistant to anoxia-induced apoptosis. A549 cells preconditioned with either hypoxia (1.5% O(2)) or tumor necrosis factor-alpha, which activated the transcription factors hypoxia-inducible factor-1 or nuclear factor-kappaB, respectively, did not provide protection from anoxia-induced cell death. These results indicate that A549 cells require a functional electron transport chain and the release of cytochrome c for anoxia-induced apoptosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.