Abstract

Within colonies of Damaraland mole-rats (Cryptomys damarensis), anovulation in non-reproductive females is thought to play an important role in maintaining reproductive skew. Pituitary sensitivity and ovarian structure were examined in three groups of females that differed with respect to their social environment and breeding status to determine whether anovulation is due to inhibitory social cues or is merely the result of a lack of copulatory stimulation. The contribution of gonadal steroid negative feedback to neuroendocrine differences in the reproductive systems of the respective groups was also investigated. LH secretion after a 0.5 micrograms GnRH challenge in females that had been removed from the presence of the breeding individuals for at least 6 months (removed non-reproductive females) was significantly higher than in non-reproductive females in the colony, but significantly lower than in reproductive females. In both removed non-reproductive females and reproductive females, corpora lutea were observed in ovaries of seven of eight females, indicating that ovulation occurs spontaneously in subordinate females on removal from the breeding pair. Circulating progesterone concentrations in removed non-reproductive females were significantly higher than in non-reproductive females, indicating that circulating progesterone is not responsible for infertility in non-reproductive females. Indeed, after hystero-ovariectomy, reproductive females continued to show significantly greater GnRH-stimulated LH secretion than non-reproductive females. Thus, differential inhibition of gonadotrophin secretion in breeding and non-breeding females occurs independently of gonadal steroids. It is concluded that female Damaraland mole-rats are spontaneous ovulators and that anovulation results from inhibitory social cues within the colony, not a lack of copulatory stimulation. Since non-reproductive females are infertile, inhibition of the hypothalamo-pituitary-gonadal axis has the potential to play a causal role in maintaining reproductive skew in colonies of C. damarensis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.