Abstract

Introduction: an alternative solution to the Schrodinger-Langevin equation is presented, where the temporal dependence is explained, assuming a Coulomb potential. Finally, the trajectory equations are found. Objective: in this paper we contribute by presenting a detailed and simple solution of the Schrödinger-Langevin equation for a Coulomb potential. Materials and Methods: using an appropriate ansatz, we solve the Schrödinger-Langevin equation, finding the expected values of position and moment. Results: a simple method was presented to find the expected position and moment values in the Schrödinger-Langevin equation, the ansatz used to find these solutions allows the model to be generalized in a certain way to electric potentials and harmonic oscillators. Conclusions: the model used to solve the Schrödinger-Langevin equation, allowed to find the expected values of position and moment of a particle in a Coulomb potential, the temporal dependence of such solutions is made explicit, which allows finding the path equations of the particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.