Abstract
The chemoprotective effects of a diet rich in broccoli or kale has been appreciated for several decades. Such cruciferous vegetables are a rich source of isothiocyanates (ITCs) such as benzyl ITC (BITC) and phenethyl ITC (PEITC). Each of these ITCs have antiproliferative activity against various tumors and PEITC is in clinical trials for lung and oral cancers. However, the mechanism by which ITCs suppress carcinogenesis has been the subject of much debate and numerous potential targets have been proposed. Here we show that BITC and PEITC inhibit the deubiquitinating enzyme (DUB) USP9x in vitro and in living cells. Both ITC treatment and USP9x knockdown decrease the levels of the oncogenic proteins MCL1 and Bcr‐Abl kinase. BITC and PEITC also inhibit UCH37, a proteasome associated DUB involved in the degradation of many proteins. Competitive activity profiling in cells pre‐treated with these ITCs suggests that other DUBs may also be inhibited. Inhibition occurs at physiologically relevant concentrations and time scales, and thus can explain many of the anticancer properties of dietary ITCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.