Abstract

The Lawrence-Krammer representation of the braid group was proved to be faithful for by Bigelow and Krammer. In our paper, we give a new proof in the case by using matrix computations. First, we prove that the representation of the braid group is unitary relative to a positive definite Hermitian form. Then we show the faithfulness of the representation by specializing the indeterminates q and t to complex numbers on the unit circle rather than specializing them to real numbers as what was done by Krammer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.