Abstract

Huber's estimator has had a long lasting impact, particularly on robust statistics. It is well known that under certain conditions, Huber's estimator is asymptotically minimax. A moderate generalization in rederiving Huber's estimator shows that Huber's estimator is not the only choice. We develop an alternative asymptotic minimax estimator and name it regression with stochastically bounded noise (RSBN). Simulations demonstrate that RSBN is slightly better in performance, although it is unclear how to justify such an improvement theoretically. We propose two numerical solutions: an iterative numerical solution, which is extremely easy to implement and is based on the proximal point method; and a solution by applying state-of-the-art nonlinear optimization software packages, e.g., SNOPT. Contribution: the generalization of the variational approach is interesting and should be useful in deriving other asymptotic minimax estimators in other problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.