Abstract

BackgroundExpression of sexual dimorphism is recognised in various fossil groups of molluscs such as the Ammonoidea, an extinct group of shelled cephalopods. During the Mesozoic, the best-documented sexual dimorphic examples are seen in the Jurassic superfamily Perisphinctoidea. It is usually expressed by distinct adult size and apertural modifications between the antidimorphs. Putative males (otherwise referred to as microconch) are small in size and develop lappets at the end of the shell while the females (macroconch) are larger and bear a simple peristome. Dubious cases are, however, known in that superfamily, which often relate to taxonomic biases or lack of diagnostic characters, and some others expose ontogenetic anomalies illustrated by ‘sex reversals’ in the shell morphology and ornamentation.ResultsThe discovery of two specimens of the Callovian Aspidoceratidae Peltoceras athleta (Phillips), having both female and male features, questions the significance and causes of ‘sex reversals’ in the Ammonoidea. The two specimens have started with the macroconch ontogeny of Peltoceras athleta and show an apparent change toward maleness in the adult, as illustrated by their rounded whorl section, ribs retroversion, fading of the tubercles and lappets typical of the microconchs. Few other cases of female-to-male, as well as male-to-female ‘sex reversal’, are known in the fossil record, all belonging to the Jurassic Perisphinctoidea (families Perisphinctidae or Aspidoceratidae). Since all Jurassic Perisphinctoidea are strictly gonochoristic, these ‘sex reversals’ are pathological in nature and are herein referred to as a new forma-type pathology: namely “forma hermaphrodita”.ConclusionsIn the absence of any clear evidence of injury or parasitism, we hypothesize that such “forma hermaphrodita” individuals illustrate pathologic cases of intersexuality. Little is known about the ammonoid soft parts, and it is not possible to determine which internal sexual organs occur in specimens having both male and female external shell features. Abnormal feminisation and/or masculinisation also occur in modern cephalopods, the latter also grouping only gonochoric species. This phenomenon is similarly illustrated by a change in the adult body size and a mixing of both female and male structures. In that case, intersexuality is either advantageous in the population or caused sterility. The causes of intersexuality are not clearly established but environmental pollutants are evoked in modern cephalopods because they act as endocrine disrupters. ‘Sex reversals’ and/or non-functional reproductive abnormalities have also been caused by endocrine disrupters in various gonochoric gastropods species, but infestation, genetic abnormalities, temperature fluctuations or viruses are multiple causes, which can stimulate or inhibit neural-endocrinal activity by direct gonadal influence, and ultimately lead to feminisation or masculinisation in fishes, isopods, crustaceans, and gastropods as well. Regardless of whether “forma hermaphrodita” is due to an exogenic or endogenic cause, the record of intersex Perisphinctoidea in the Jurassic can be explained by the ready recognition of dimorphic pairs, and the easy collection of large and sufficiently preserved fossil palaeopopulations in which intersex specimens have statistically more chance to be found.

Highlights

  • Expression of sexual dimorphism is recognised in various fossil groups of molluscs such as the Ammo‐ noidea, an extinct group of shelled cephalopods

  • Dimorphism of sexual nature has been reported in various fossil groups of molluscs by analogy with recent species

  • De Blainville [1] first suggested that sexual dimorphism occurs in the Ammonoidea—an extinct group of shelled cephalopods—by comparison with the living nautiloid species Nautilus pompilius [2]

Read more

Summary

Introduction

Expression of sexual dimorphism is recognised in various fossil groups of molluscs such as the Ammo‐ noidea, an extinct group of shelled cephalopods. During the Mesozoic, the best-documented sexual dimorphic examples are seen in the Jurassic superfamily Perisphinctoidea. It is usually expressed by distinct adult size and aper‐ tural modifications between the antidimorphs. Putative males (otherwise referred to as microconch) are small in size and develop lappets at the end of the shell while the females (macroconch) are larger and bear a simple peristome. During the Mesozoic, the Jurassic Perisphinctoidea provide the best-known examples of sexual dimorphism Supposed males (their conchs are referred to as microconchs, [m]) are usually small in size and develop lappets at the end of the growth while the females (macroconchs, [M]) are distinctly larger and bear a simple peristome

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.