Abstract
In March 1973, W. Veldman [1] discovered that, by a slight modification of a Kripke-model, it was possible to give an intuitionistic proof of the completeness-theorem for the intuitionistic predicate calculus (IPC) with respect to modified Kripke models. The modification was the following: Let f represent absurdity, then we allow the possibility that and we agree that, for all sentences ϕ, , if . Just one modified Kripke model is constructed such that validity in implies derivability in IPC. While usually one thinks of as some subset of ⋃nNatn and of as the discrete natural ordering in ⋃nNatn, in Veldman's model , is a spread and , where Γα and Γβ are sets of sentences associated with α, resp. β, is a nondiscrete ordering.In the completeness-proofs, both for Beth and for Kripke models that we present here, we consider only models over ⋃nNatn, with the natural discrete ordering and we need validity in all models, not just in one, to get derivability in IPC. Also we have to modify the definition of a model in a somewhat different way than Veldman did. We agree that if ∨s[M⊨sf], then M⊨sϕ for each s ∈ ⋃nNatn and for each sentence ϕ.One can view a single model of the type constructed in [1] as the result of throwing together all the models of (the type constructed in) this paper into one big model, which has the somewhat strange properties mentioned above.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.