Abstract
ABSTRACTA right R-module M is called glat if any homomorphism from any finitely presented right R-module to M factors through a finitely presented Gorenstein projective right R-module. The concept of glat modules may be viewed as another Gorenstein analogue of flat modules. We first prove that the class of glat right R-modules is closed under direct sums, direct limits, pure quotients and pure submodules for arbitrary ring R. Then we obtain that a right R-module M is glat if and only if M is a direct limit of finitely presented Gorenstein projective right R-modules. In addition, we explore the relationships between glat modules and Gorenstein flat (Gorenstein projective) modules. Finally we investigate the existence of preenvelopes and precovers by glat and finitely presented Gorenstein projective modules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.